<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
h2
        {mso-style-priority:9;
        mso-style-link:"Heading 2 Char";
        mso-margin-top-alt:auto;
        margin-right:0in;
        mso-margin-bottom-alt:auto;
        margin-left:0in;
        font-size:18.0pt;
        font-family:"Times New Roman",serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:#954F72;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
span.Heading2Char
        {mso-style-name:"Heading 2 Char";
        mso-style-priority:9;
        mso-style-link:"Heading 2";
        font-family:"Times New Roman",serif;
        font-weight:bold;}
p.my-4, li.my-4, div.my-4
        {mso-style-name:my-4;
        mso-margin-top-alt:auto;
        margin-right:0in;
        mso-margin-bottom-alt:auto;
        margin-left:0in;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b><span style="font-size:18.0pt;font-family:"Times New Roman",serif">Summary<o:p></o:p></span></b></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:12.0pt;font-family:"Times New Roman",serif">An AI Researcher at Neural Trust has discovered a novel jailbreak technique that defeats the safety mechanisms
 of today’s most advanced Large Language Models (LLMs). Dubbed the <b>Echo Chamber Attack</b>, this method leverages context poisoning and multi-turn reasoning to guide models into generating harmful content, without ever issuing an explicitly dangerous prompt.<o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:12.0pt;font-family:"Times New Roman",serif">Unlike traditional jailbreaks that rely on adversarial phrasing or character obfuscation, Echo Chamber weaponizes
 indirect references, semantic steering, and multi-step inference. The result is a subtle yet powerful manipulation of the model’s internal state, gradually leading it to produce policy-violating responses.<o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:12.0pt;font-family:"Times New Roman",serif">In controlled evaluations, the Echo Chamber attack achieved a success rate of over 90% on half of the categories
 across several leading models, including GPT-4.1-nano, GPT-4o-mini, GPT-4o, Gemini-2.0-flash-lite, and Gemini-2.5-flash. For the remaining categories, the success rate remained above 40%, demonstrating the attack's robustness across a wide range of content
 domains.<o:p></o:p></span></p>
<p class="MsoNormal"><a href="https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fneuraltrust.ai%2Fblog%2Fecho-chamber-context-poisoning-jailbreak&data=05%7C02%7Ccaice-csse%40eng.auburn.edu%7C768b4f1c289a4b7f354808ddb3347acc%7Cccb6deedbd294b388979d72780f62d3b%7C0%7C0%7C638863760157059876%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=P6x8GMnMxJ2ekxsSTqKnW31DL6Wg329I6DuM5se0I9s%3D&reserved=0" originalsrc="https://neuraltrust.ai/blog/echo-chamber-context-poisoning-jailbreak">https://neuraltrust.ai/blog/echo-chamber-context-poisoning-jailbreak</a>
<o:p></o:p></p>
</div>
</body>
</html>